【pytorchでニューラルネットワーク#6】ニューラルネットワーク(sequential)
記事の目的
pytorchでニューラルネットワークを実装していきます。ここにある全てのコードは、コピペで再現することが可能です。
目次
1 ライブラリとデータ
# In[1] from torchvision import datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt torch.manual_seed(1) # In[2] transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0),(1)),lambda x: x.view(-1)]) root = './data' mnist_train = datasets.MNIST(root=root,download=True,train=True,transform=transform) mnist_test = datasets.MNIST(root=root,download=True,train=False,transform=transform) train_dataloader = DataLoader(mnist_train,batch_size=100,shuffle=True) test_dataloader = DataLoader(mnist_test,batch_size=100,shuffle=False) # In[3] x, t = next(iter(train_dataloader)) image = x[0,].view(28,28).detach().numpy() plt.imshow(image,cmap='binary_r')
2 モデル
# In[4] model = nn.Sequential(nn.Linear(784,200), nn.ReLU(), nn.Linear(200,10)) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(),lr=1e-2)
3 モデルの学習と評価
# In[5] loss_train_all = [] acc_train_all = [] loss_test_all = [] acc_test_all = [] for epoch in range(1, 50+1): loss_train = 0 acc_train = 0 loss_test = 0 acc_test = 0 for (x,t) in train_dataloader: y = model(x) loss = criterion(y,t) optimizer.zero_grad() loss.backward() optimizer.step() loss_train += loss.item() acc_train += sum(y.argmax(axis=1) == t)/len(t) loss_train_mean = loss_train / len(train_dataloader) acc_train_mean = acc_train / len(train_dataloader) with torch.no_grad(): for x, t in test_dataloader: y = model(x) loss = criterion(y,t) loss_test += loss.item() acc_test += sum(y.argmax(axis=1) == t)/len(t) loss_test_mean = loss_test / len(test_dataloader) acc_test_mean = acc_test / len(test_dataloader) loss_train_all.append(loss_train_mean) acc_train_all.append(acc_train_mean) loss_test_all.append(loss_test_mean) acc_test_all.append(acc_test_mean) if epoch == 1 or epoch % 10 == 0: print(f"Epoch: {epoch}") print(f"loss_train: {loss_train_mean:.4f}, acc_train: {acc_train_mean:.4f}") print(f"loss_test: {loss_test_mean:.4f}, acc_test: {acc_test_mean:.4f}") # In[6] plt.plot(range(1,len(loss_train_all)+1), loss_train_all, label="train") plt.plot(range(1,len(loss_test_all)+1), loss_test_all, label="test") plt.legend() # In[7] plt.plot(range(1,len(acc_train_all)+1), acc_train_all, label="train") plt.plot(range(1,len(acc_test_all)+1), acc_test_all, label="test") plt.legend()