
【強化学習#2】環境とエージェント
記事の目的
youtubeの「【強化学習#2】環境とエージェント」で解説した内容のコードです。
目次
1 環境とエージェント
import numpy as np import matplotlib.pyplot as plt np.random.seed(1)
class Environment:
def __init__(self, size=3, lucky=[]):
self.size = size
self.lucky = lucky
self.goal = (size-1, size-1)
self.states = [(x, y) for x in range(size) for y in range(size)]
def next_state(self, s, a):
s_next = (s[0] + a[0], s[1] + a[1])
if s == self.goal:
return s
if s_next not in self.states:
return s
if s_next in self.lucky:
if np.random.random() < 0.8:
return self.goal
else:
return s_next
return s_next
def reward(self, s, s_next):
if s == self.goal:
return 0
if s_next == self.goal:
return 1
return 0
class Agent():
def __init__(self, environment, policy=[0, 0, 1/2, 1/2]):
self.actions = [(-1, 0), (0, -1), (1, 0), (0, 1)]
self.environment = environment
def action(self, s, a):
s_next = self.environment.next_state(s, a)
r = self.environment.reward(s, s_next)
return r, s_next
2 エピソードの取得
def get_episode(agent, gamma=0.9):
print("s, a, s_next, r")
s = (0,0)
episode = []
r_sum = 0
num = 0
while True:
a = agent.actions[np.random.randint(0,4)]
r, s_next = agent.action(s, a)
episode.append((s, a, s_next, r))
r_sum += (gamma**num)*r
s = s_next
num += 1
if s == agent.environment.goal:
break
return episode, r_sum
3 可視化用関数
def show_maze(environment):
size = environment.size
fig = plt.figure(figsize=(3,3))
plt.plot([-0.5, -0.5], [-0.5, size-0.5], color='k')
plt.plot([-0.5, size-0.5], [size-0.5, size-0.5], color='k')
plt.plot([size-0.5, -0.5], [-0.5, -0.5], color='k')
plt.plot([size-0.5, size-0.5], [size-0.5, -0.5], color='k')
for i in range(size):
for j in range(size):
plt.text(i, j, "{}".format(i+size*j), size=20, ha="center", va="center")
if (i,j) in environment.lucky:
x = np.array([i-0.5,i-0.5,i+0.5,i+0.5])
y = np.array([j-0.5,j+0.5,j+0.5,j-0.5])
plt.fill(x,y, color="lightgreen")
plt.axis("off")
4 シミュレーション
4.1 シミュレーション1
env1 = Environment(lucky=[(1,2)]) agent1 = Agent(env1) show_maze(env1)

get_episode(agent1)

4.2 シミュレーション2
env2 = Environment(size=4, lucky=[(1,2), (2,3)]) agent2 = Agent(env2) show_maze(env2)

get_episode(agent2)
