
【pythonでニューラルネットワーク#7】単回帰分析(trainデータとtestデータ)
記事の目的
pythonでtrainデータとtestデータに分割して単回帰分析を実装していきます。ここにある全てのコードは、コピペで再現することが可能です。
目次
1 trainデータとtestデータ

2 ライブラリとデータの作成

# In[1] import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split np.random.seed(1) # In[2] x = np.random.normal(5, 1, 100) t = 3*x+ 2 + np.random.normal(0, 1, 100) # x = (x - x.mean())/x.std() # t = (t - t.mean())/t.std() # In[3] x_train, x_test, t_train, t_test = train_test_split(x, t) print(x_train.shape, x_test.shape, t_train.shape, t_test.shape) # In[4] plt.scatter(x_train,t_train)
3 モデル

# In[5]
class Optimizer:
def step(self, lr):
self.w -= lr * self.dw
self.b -= lr * self.db
class Linear(Optimizer):
def __init__(self):
self.w = np.random.randn(1)
self.b = np.random.randn(1)
def forward(self,x):
self.x = x
self.y = self.w*x + self.b
return self.y
def backward(self, dy):
self.dw = np.dot(dy, self.x)
self.db = dy.sum()
class Loss:
def forward(self, y, t):
self.y = y
self.t = t
L = sum((y-t)**2)/len(t)
return L
def backward(self):
dy = 2*(self.y - self.t) / len(self.t)
return dy
# In[6]
model_ob = Linear()
loss_ob = Loss()
def model(x):
y = model_ob.forward(x)
return y
def loss(y,t):
L = loss_ob.forward(y,t)
return L
def backward():
dy = loss_ob.backward()
model_ob.backward(dy)
def optimizer(lr):
model_ob.step(lr)
4モデルの学習

# In[7]
batch_size = 10
batch_n = len(x_train) // batch_size
batch_index = np.arange(len(x_train))
loss_train_all = []
loss_test_all = []
for epoch in range(1, 100 + 1):
np.random.shuffle(batch_index)
for n in range(batch_n):
mb_index = batch_index[n*batch_size:(n+1)*batch_size]
y = model(x_train[mb_index])
loss_train = loss(y,t_train[mb_index])
backward()
optimizer(1e-3)
y_train = model(x_train)
loss_train = loss(y_train ,t_train)
y_test = model(x_test)
loss_test = loss(y_test ,t_test)
loss_train_all.append(loss_train)
loss_test_all.append(loss_test)
if epoch == 1 or epoch % 20 == 0:
print(f"Epoch {epoch}, loss_train {loss_train:.4f}, loss_test {loss_test:.4f}")
5 結果の可視化

# In[8] plt.plot(range(1,len(loss_train_all)+1), loss_train_all, label="train") plt.plot(range(1,len(loss_test_all)+1), loss_test_all, label="test") plt.legend() # In[9] x = np.arange(2,9) y = model(x) plt.plot(x,y, color="black") plt.scatter(x_train,t_train)