
【pytorchでニューラルネットワーク#6】ニューラルネットワーク(sequential)
記事の目的
pytorchでニューラルネットワークを実装していきます。ここにある全てのコードは、コピペで再現することが可能です。
目次
1 ライブラリとデータ

# In[1] from torchvision import datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt torch.manual_seed(1) # In[2] transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0),(1)),lambda x: x.view(-1)]) root = './data' mnist_train = datasets.MNIST(root=root,download=True,train=True,transform=transform) mnist_test = datasets.MNIST(root=root,download=True,train=False,transform=transform) train_dataloader = DataLoader(mnist_train,batch_size=100,shuffle=True) test_dataloader = DataLoader(mnist_test,batch_size=100,shuffle=False) # In[3] x, t = next(iter(train_dataloader)) image = x[0,].view(28,28).detach().numpy() plt.imshow(image,cmap='binary_r')
2 モデル

# In[4] model = nn.Sequential(nn.Linear(784,200), nn.ReLU(), nn.Linear(200,10)) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(),lr=1e-2)
3 モデルの学習と評価

# In[5]
loss_train_all = []
acc_train_all = []
loss_test_all = []
acc_test_all = []
for epoch in range(1, 50+1):
loss_train = 0
acc_train = 0
loss_test = 0
acc_test = 0
for (x,t) in train_dataloader:
y = model(x)
loss = criterion(y,t)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_train += loss.item()
acc_train += sum(y.argmax(axis=1) == t)/len(t)
loss_train_mean = loss_train / len(train_dataloader)
acc_train_mean = acc_train / len(train_dataloader)
with torch.no_grad():
for x, t in test_dataloader:
y = model(x)
loss = criterion(y,t)
loss_test += loss.item()
acc_test += sum(y.argmax(axis=1) == t)/len(t)
loss_test_mean = loss_test / len(test_dataloader)
acc_test_mean = acc_test / len(test_dataloader)
loss_train_all.append(loss_train_mean)
acc_train_all.append(acc_train_mean)
loss_test_all.append(loss_test_mean)
acc_test_all.append(acc_test_mean)
if epoch == 1 or epoch % 10 == 0:
print(f"Epoch: {epoch}")
print(f"loss_train: {loss_train_mean:.4f}, acc_train: {acc_train_mean:.4f}")
print(f"loss_test: {loss_test_mean:.4f}, acc_test: {acc_test_mean:.4f}")
# In[6]
plt.plot(range(1,len(loss_train_all)+1), loss_train_all, label="train")
plt.plot(range(1,len(loss_test_all)+1), loss_test_all, label="test")
plt.legend()
# In[7]
plt.plot(range(1,len(acc_train_all)+1), acc_train_all, label="train")
plt.plot(range(1,len(acc_test_all)+1), acc_test_all, label="test")
plt.legend()