
【pytorchでニューラルネットワーク#10】CNN(GPUの利用)
記事の目的
pytorchでCNN(畳み込みニューラルネットワーク)をGPUを利用して実装していきます。ここにある全てのコードは、コピペで再現することが可能です。実行は、jupyternotebookではなくGoogle colabolatoryを使用しています。
目次
1 GPUの利用

2 ライブラリとデータ

# In[1] from torchvision import datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import matplotlib.pyplot as plt torch.manual_seed(1) # In[2] transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0),(1))]) root = './data2' mnist_train = datasets.MNIST(root=root,download=True,train=True,transform=transform) mnist_test = datasets.MNIST(root=root,download=True,train=False,transform=transform) train_dataloader = DataLoader(mnist_train,batch_size=100,shuffle=True) test_dataloader = DataLoader(mnist_test,batch_size=100,shuffle=False) # In[3] x, t = next(iter(train_dataloader)) image = x[0,].view(28,28).detach().numpy() plt.imshow(image,cmap='binary_r')
3 モデル

# In[4]
class Model(nn.Module):
def __init__(self):
super().__init__()
self.c1 = nn.Conv2d(1, 32, kernel_size=4, stride=2, padding=1)
self.b1 = nn.BatchNorm2d(32)
self.c2 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1)
self.b2 = nn.BatchNorm2d(64)
self.l1 = nn.Linear(576,128)
self.b3 = nn.BatchNorm1d(128)
self.l2 = nn.Linear(128,10)
def forward(self,x):
x = torch.relu(self.b1(self.c1(x)))
x = F.max_pool2d(torch.relu(self.b2(self.c2(x))),2)
x = x.view(-1,576)
x = torch.relu(self.b3(self.l1(x)))
x = self.l2(x)
return x
# In[5]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device
# In[6]
model = Model().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=1e-2)
4 モデルの学習と評価

# In[7]
loss_train_all = []
acc_train_all = []
loss_test_all = []
acc_test_all = []
for epoch in range(1, 20+1):
loss_train = 0
acc_train = 0
loss_test = 0
acc_test = 0
model.train()
for (x,t) in train_dataloader:
x, t = x.to(device), t.to(device)
y = model(x)
loss = criterion(y,t)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_train += loss.item()
acc_train += sum(y.argmax(axis=1) == t)/len(t)
loss_train_mean = loss_train / len(train_dataloader)
acc_train_mean = acc_train / len(train_dataloader)
model.eval()
with torch.no_grad():
for x, t in test_dataloader:
x, t = x.to(device), t.to(device)
y = model(x)
loss = criterion(y,t)
loss_test += loss.item()
acc_test += sum(y.argmax(axis=1) == t)/len(t)
loss_test_mean = loss_test / len(test_dataloader)
acc_test_mean = acc_test / len(test_dataloader)
loss_train_all.append(loss_train_mean)
acc_train_all.append(acc_train_mean)
loss_test_all.append(loss_test_mean)
acc_test_all.append(acc_test_mean)
if epoch == 1 or epoch % 5 == 0:
print(f"Epoch: {epoch}")
print(f"loss_train: {loss_train_mean:.4f}, acc_train: {acc_train_mean:.4f}")
print(f"loss_test: {loss_test_mean:.4f}, acc_test: {acc_test_mean:.4f}")
# In[8]
plt.plot(range(1,len(loss_train_all)+1), loss_train_all, label="train")
plt.plot(range(1,len(loss_test_all)+1), loss_test_all, label="test")
plt.legend()
# In[9]
plt.plot(range(1,len(acc_train_all)+1), acc_train_all, label="train")
plt.plot(range(1,len(acc_test_all)+1), acc_test_all, label="test")
plt.legend()